
With the aggressive pace of technological change and the 
onslaught of news regarding data breaches, cyber-attacks, and 
technological threats to privacy and security, it is easy to assume 
these are fundamentally new threats. The pace of technological 
change is slower than it feels, and many seemingly new categories 
of threats have been with us longer than we remember. 

Nervous System is a monthly series that approaches issues of 
data privacy and cyber security from the context of history—to 
look to the past for clues about how to interpret the present and 
prepare for the future.

The act of “zipping” a computer file or directory into a smaller 
format has become routine, even though the practice may seem 
like some dark art of wizardry. Compressing a stack of blankets 
for storage using a vacuum sealer makes the overall volume 
appear smaller, for example, because removing excess air from 
the blankets keeps the part that matters and discards something 
else. But how exactly does one take an electronic document and 
make it smaller without losing some aspect of it? The electronic 
document, at root, consists of a sequence of 1s and 0s. There 
is no excess something else to remove. Compressing the data 
inevitably means discarding some portion of those 1s and 0s. 

In 1977, Israeli data scientists Jacob Ziv and Abraham Lempel 
tackled this challenge and came up with a way to remove binary 
data from a document while retaining the information that binary 
data represented. Their theory of Universal Data Compression 
was based on “run-length encoding.” In this context, “run” 
refers to a sequence of bytes in the electronic data source that 
recur more than once; “length” is a measurement of the size of 
any given run; and “encoding” means to substitute some sort of 
code in place of the run. Although run-length encoding works 
wonders for any type of binary data, it is perhaps most easily 
explained in terms of compressing written text.

When computers were first gaining widespread use in American 
businesses in the 1960s and 1970s, the standard byte length 
was 7 bits. Each bit is an individual instance of a binary value, 
basically a 1 or a 0. Each additional bit doubles the possible 
values the sequence can potentially hold. A 7-bit byte therefore 
allows for 128 possible values per byte. For the kinds of 
applications then in use, this was sufficient to cover the entire 
twenty-six-letter English alphabet in both upper and lowercase, 
the numerical values from 0 to 9, a variety of punctuation and 
symbols, and some legacy control codes left over from the 
era of Teletype machines. This system of mapping the 128 
possible values represented by 7-bit computing to each of 
these unique characters was called ASCII (American Standard 

Nervous System: Putting Data on a Diet: How 
Lossless Compression Makes Information Skinnier
BY DAVID KALAT

INTELLIGENCE THAT WORKS



Code for Information Interchange). In the interest of preserving 
backward compatibility, this core set of character mapping was 
maintained even as the advent of 8-bit computing doubled the 
number of possible values.

In practical terms, this means that each individual character 
in written text—including the spaces between words—
occupies an entire 8-bit byte of storage, and certain foreign 
alphabets and specialized character sets like emojis require 
multiple bytes. The preceding sentence consists of characters 
comprising 251 bytes. Each new character added to the 
document increments the need for storage by one more byte, 
one at a time (hence the modern trend toward using a single 
space after a period, because double spaces require literally 
twice as much data storage).

The key to lossless compression is to replace redundant runs 
of data with a pointer that occupies less storage space. For 
example, the preceding text includes six instances of the string 
“character”; in ASCII, each one requires 9 bytes. That is 54 
bytes already occupied by just this one run. If the document 
replaced each recurrence with a pointer back to the first one, 
as long as the pointer itself used fewer than 9 bytes, the overall 
amount of storage needed would be reduced without having 
lost any information.

In a 2004 interview, Ziv amusingly described his invention 
in terms of an analogy that was already dated at the time, 
but decidedly prehistoric now. Ziv compared his algorithm 
to TV Guide, which used to exist as a printed publication. As 
Ziv observed, if the same movie was shown several times 
in a week, the editors would give a description of the movie 
only once, and subsequent instances would refer back to the 
previous page. One could describe Ziv and Lempel’s creation 
perhaps more universally by noting that the use of pronouns 
to replace names and concepts with simplified references is 
as old as human language. 

Ziv and Lempel’s original version of this algorithm in 1977 used 
a fixed-length pointer that identified 1) how far back to look to 
copy 2) how many bytes. Subsequent variations improved the 
efficiency of the algorithm by improving the design of the pointer. 
Later tweaks included developing a variable-sized pointer that 
could accommodate longer lookbacks for longer runs; changing 
how the system distinguishes pointers from uncompressed 
“literal” data; and developing an internal dictionary of runs that 
can assign shorter codes to more frequently used runs.

As groundbreaking as the invention was, it was perhaps too 
avant-garde in 1977 to find widespread use. Much of the early 
research into Universal Data Compression in the 1970s and 
1980s was academic more than practical. Lempel and Ziv 
foresaw the commercial applications and hoped to patent the 
idea, but their employers at Bell Labs were disinterested at 
first. At that time, it had not yet been established that software 
even could be patented. Eventually, Bell Labs and Sperry-
Rand obtained a patent on a hardware-based implementation 
of the algorithm. As Ziv later acknowledged, though, the 
underlying idea was both fairly simple and rooted in familiar 
concepts of how language works, so the limited hardware-
based patents meant little, as engineers around the world 
could easily code their own variations. As the age of internet-
based communications heightened the urgency to compress 
data without losing information, the marketplace for variant 
compression algorithms flourished. In general terms, this is 
how all forms of lossless compression work and still forms 
the basis for ZIP compression and other lossless approaches 
used today.

This article was originally published in Legaltech News on July 7, 2022. The opinions expressed in this publication are those of the individual 
author and do not represent the opinions of BRG or its other employees and affiliates. The information provided in the publication is not 
intended to and does not render legal, accounting, tax, or other professional advice or services, and no client relationship is established 
with BRG by making any information available in this publication, or from you transmitting an email or other message to us. None of the 
information contained herein should be used as a substitute for consultation with competent advisors.

INTELLIGENCE THAT WORKS


