= False
mod . use_z = Trye

. select= 1

. select=1
PR .scene.objects.active = modifier ¢
cted” + str(modifier_ob)) #

INTELLIGENCE THAT WORKS

Nervous System #28: Triumphs of a Lazy

Programmer

BY DAVID KALAT

With the aggressive pace of technological change and the
onslaught of news regarding data breaches, cyber-attacks, and
technological threats to privacy and security, it is easy to assume
these are fundamentally new threats. The pace of technological
change is slower than it feels, and many seemingly new categories
of threats have been with us longer than we remember.

Nervous System is a bimonthly blog that approaches issues of
data privacy and cyber security from the context of history—to
look to the past for clues about how to interpret the present and
prepare for the future.

This month marks the anniversary of the publication of Grace
Hopper’s landmark work in computer science, “The Education
of a Computer.” In seven typewritten pages published by the
Remington Rand corporation in 1952, Hopper bequeathed
to future generations something computer scientists in her
day resisted, but programmers today likely take for granted:
the ability to write code in programming languages that are
(reasonably) understandable to humans. This was not always
the case. In fact, in Hopper’s day, being a computer programmer
meant physically connecting wires and switches at a level that
today’s coders would consider engineering, not programming.

Hopper, a US Navy rear admiral and Ph.D. in mathematics,
is one of the most important figures in computer science.
She famously had a specially made wall clock that ran
counterclockwise as a constant reminder to “think differently.”
She was born at a propitious moment in history. She received
her degrees from Vassar in 1928 and Yale University in 1930 and
1934 at a time when women were receiving doctorates at a rate
not matched until the 1980s. The onset of World War Il opened
job opportunities that had previously been denied to women.

Hopper's first attempt to enlist in the war effortin the immediate
aftermath of the attack on Pearl Harbor was rebuffed due to
her age and small size, but still she persisted and joined the
US Navy Reserve. She was assigned to work on a project at
Harvard designing computers to solve the complex calculations
for weapons systems to fire accurately at airplanes. She was
one of the programmers working on the Harvard Mark 1
computer—a fifty-foot-long collection of wheels, gears, and
switches cabled together by 530 miles of wires. To instruct the
computer meant first working out which switches should be
switched in which way, and which bits needed to be plugged
into other bits. Then she had to personally flip those switches
and connect the wires.



In 1949, Hopper joined J. Presper Eckert and John Mauchly at
the Eckert-Mauchly Computer Corporation to help them build
computers for commercial purposes. Once again she confronted
the mind-numbing aspects of programming early computers.

In the spirit of “exasperation is the mother of invention,”
Hopper's insight came from recognizing how much of her time
and attention were spent hardwiring the same routines, over
and over. Certain low-level tasks tended to repeat in different
algorithms. She cataloged these “bread and butter” routines
and assigned them symbolic codes.

Hopper could then string together more easily a sequence of
these symbolic codes and let the “compiler” do the drudge
work of translating the steps into the corresponding machine
language. This permitted her to, as she put it in her landmark
paper, “return to being a mathematician.” This brilliant method
of reusing software code has since become so familiar as to
pass almost without notice. As Hopper quipped, “No-one
thought of that earlier, because they weren't as lazy as | was.”

Hopper continued to improve her compiler programs, with the
ultimate goal of enabling programmers to write code in ordinary
English, while a back-end of compilers would convert that
human language into machine language. That goal remained
for her—and for us—elusive, but it animated her efforts.

Happy users of her compiler started mailing her their reusable
routines, which she added to the compiler library for the nest
release. This process evolved into one of the first computer
programming languages, the Common Business-Oriented
Language (COBOL). COBOL emerged in 1959, and it too proved
to be a lasting influence on the world of computers.

COBOL became the most commonly used programming
language forbusiness applications in the middle of the twentieth
century—so ubiquitous, in fact, that many organizations
and governments never replaced that code. This surfaced
unexpectedly in the present-day COVID-19 pandemic, when
state governments around the United States found themselves
overwhelmed by coronavirus-related unemployment claims.
These governments still ran their systems on COBOL, which
created an unprecedented need for competent COBOL
programmers to help improve and update the programs to
process the claims.

Although Hopper shrugged off her invention of software
compilers as something done out of “laziness” so she could
avoid the drudgery of machine coding, it was a tremendous
leap forward into a new age of software coding. Programmers
today can thank Hopper that they do not need to hand-wire
their programs into circuit boards.

Legaltech
NEews

This article was originally published in Legaltech News on May 5, 2020. The opinions expressed in this publication are those of the individual
author and do not represent the opinions of BRG or its other employees and affiliates. The information provided in the publication is not
intended to and does not render legal, accounting, tax, or other professional advice or services, and no client relationship is established
with BRG by making any information available in this publication, or from you transmitting an email or other message to us. None of the
information contained herein should be used as a substitute for consultation with competent advisors.

INTELLIGENCE THAT WORKS



