
From Gibberish to Unicode
BY DAVID KALAT

INTELLIGENCE THAT WORKS

With the aggressive pace of technological change and the 
onslaught of news regarding data breaches, cyber-attacks, and 
technological threats to privacy and security, it is easy to assume 
these are fundamentally new threats. The pace of technological 
change is slower than it feels, and many seemingly new categories 
of threats have been with us longer than we remember. 

Nervous System is a monthly series that approaches issues of 
data privacy and cyber security from the context of history—to 
look to the past for clues about how to interpret the present and 
prepare for the future.

In an early landmark of eDiscovery case law, CP Solutions 
PTE, Ltd. v. General Elec. Co. (D. Conn. Feb. 6, 2006), the 
plaintiff objected to a variety of alleged defects in defendants’ 
production, including the production of supposedly thousands 
of pages of “gibberish.” The court ruled that, to the extent that 
the underlying documents were created or received by any of 
the defendants in a readable format, they must be produced for 
plaintiff in a readable, usable format. 

From a standard of jurisprudence this seems an imminently 
reasonable conclusion. More interesting, though, is the technical 
question of why the gibberish appeared at all. While many 
system files and non-text-based electronic documents routinely 
appear as “gibberish” when rendered as printed text, an entire 
category of genuine written text-based communication can, in 
certain conditions, end up appearing as a nonsensical jumble 

of odd symbols and unreadable characters. To understand why 
this happens, and to solve for it, requires looking under the 
hood of how binary data handles text in the first place. 

When computers were first gaining widespread use in American 
businesses in the 1960s and 1970s, the standard byte length 
was 7 bits. This allowed for 128 possible values per 7-bit byte. 
For the kinds of applications then in use, this was sufficient 
to cover the entire 26-letter English alphabet in both upper 
and lowercase, the numerical values 0 through 9, a variety 
of punctuation and symbols, and some legacy control codes 
left over from the era of Teletype machines. This system of 
mapping the 128 integers available in 7-bit computing to each 
of these unique values is called ASCII (American Standard Code 
for Information Interchange).

Although ASCII provided the necessary mapping of binary byte 
values to standard English writing, it made no provision for 
documents to contain non-English text. No characters were 
available for any other alphabets.

With the advent of 8-bit computing, 128 values were added 
(because each additional bit doubles the available values). To 
maintain backward compatibility, the original ASCII character 
set was carried over. This meant that the first 128 values 
still mapped to the same ASCII characters as before, but 
the additional set of 128 values could be used for additional 
characters—here is where things got messy.



This article was originally published in Legaltech News on December 6, 2022. The opinions expressed in this publication are those of 
the individual author and do not represent the opinions of BRG or its other employees and affiliates. The information provided in the 
publication is not intended to and does not render legal, accounting, tax, or other professional advice or services, and no client relationship 
is established with BRG by making any information available in this publication, or from you transmitting an email or other message to 
us. None of the information contained herein should be used as a substitute for consultation with competent advisors.

INTELLIGENCE THAT WORKS

Different computing systems deployed the additional 128 
values in different ways. The DOS operating system used 
the extra values for smiley faces and other graphic symbols; 
Macintosh computers used the values for a mix of typographic 
marks and international letters; the “Multinational 
Character Set” by Digital Equipment Corporation focused on 
international alphabets.

Foreign language character support still proved problematic. 
The 128 values were insufficient to encompass the wide array 
of characters needed to support every foreign language—
Japanese, Chinese, Greek, Arabic, Hebrew, and so on. The 
Japanese language alone has roughly 2,000 written characters 
that are officially designated for study by high schoolers, out of 
an even larger pool of less commonly used characters. 

As a result, the characters represented by the second set of 
128 values could be read by different computer systems in 
very different ways. What might appear as a bunch of clip art 
characters on one computer could turn into foreign language 
characters on another, or vice versa. This made the interchange 
of documents among users in different countries—even among 
users of different operating systems—vexing.

One possible “solution” would be to assign 3 bytes to every 
character. That would allow for over 16.7 million different 
characters, which would be more than sufficient to cover all 
alphabets. This posed its own problem, however. Users who only 
need to write in English only need 7 or 8 bits, so implementing 
a 3-byte length per character would result in significant waste 
of data storage space for many users.

Unicode was developed as an industry-standard solution 
for this problem. A universal code chart was published that 
mapped every unique character of every human language, 
along with all necessary numerical characters, punctuation, 
typographical marks, and accent marks. Of course, this code 
map encompassed far more than 256 values. In order to 
provide maximum compatibility with existing systems, the first 
128 Unicode values match the original ASCII values. Past those 
values, Unicode allows for the use of multiple bytes to represent 
the additional character sets, but only when necessary. English 
text is encoded using only 8 bits. 

While situations such as the so-called “gibberish” production 
encountered in CP Solutions PTE, Ltd. v. General Elec. Co. are 
now thankfully rare, the problem can still arise any time a 
document is encoded using a character set different from the 
one used to display or print that document. Not all documents 
are encoded in Unicode, and the use of nonstandard character 
sets can still be encountered.

The views and opinions expressed in this article are those of the 
author and do not necessarily reflect the opinions, position, or 
policy of Berkeley Research Group, LLC or its other employees 
and affiliates.


